سفارش تبلیغ
صبا ویژن

فریاد Faryad

 Computers are machines designed to process electronically, specially prepared pieces of information, which are termed data. Handling or manipulating the information that has been given to the computer in such ways as doing calculation, adding information or making comparisons is called processing. Computers are made up of millions of electronic devices capable of storing data or moving them, at enormous speeds, through complex circuits with different functions.
 All computers have several characteristics in common, regardless of make or design. Information, in the form of instructions and data, is given to the machine, after which the machine acts on it, and a result is then returned. The information presented to the machine is the input; the internal manipulative operations, the processing; and the result, the output. These three basic concepts of input, processing, and output occur in almost every aspect of human life whether at work or at play. For example, in clothing manufacturing, the input is the pieces of cut cloth, the processing is the sewing together of these pieces, and the output is the finished garment.
 Figure 3.1 shows schematically the fundamental hardware components in a computer system. The centerpiece is called either the computer, the processor, or usually, the central processing unit (CPU). The term ‘computer‘ includes those parts of hardware in which calculations and other data manipulations are performed, and the high-speed internal memory in which data and calculations are stored during actual execution of programs. Attached to the CPU are the various peripheral devices such as card readers and keyboards (two common examples of input devices). When data or programs need to be saved for long periods of time, they are stored on various secondary memory devices or storage devices such as magnetic tapes or magnetic disks.
 Computers have often been thought of as extremely large adding machines, but this is a very narrow view of their function. Although a computer can only respond to a certain number of instructions, it is not a single-purpose machine since these instructions can be combined in an infinite number of sequences. Therefore, a computer has no known limit on the kinds of things it can do; its versatility is limited only by the imagination of those using it.
 In the late 1950s and early 1960s when electronic computers of the kind in use today were being developed, they were very expensive to own and run. Moreover, their size and reliability were such that a large number of support personnel were needed to keep the equipment operating. This has all changed now that computing power has become portable, more compact, and cheaper.
 In only a very short period of time, computers have greatly changed the way in which many kinds of work are performed. Computers can remove many of the routine and boring tasks from our lives, thereby leaving us with more time for interesting, creative work. It goes without saying that computers have created whole new areas of work that did not exist before their development.
 

A computer is a machine with an intricate network of electronic circuits that operate switches or magnetize tiny metal cores. The switches, like the cores, are capable of being in one of two possible states, that is, on or off, magnetized or demagnetized. The machine is capable of storing and manipulating numbers, letters, and characters. The basic idea of a computer is that we can make the machine do what we want by inputting signals that turn certain switches on and turn others off, or that magnetize or do not magnetize the cores.

The basic job of computers is the processing of information. For this reason, computers can be defined as devices which accept information in the form of instructions called a program and characters called data perform mathematical and/or logical operations on the information, and then supply results of these operations. The program, or part of it, which tells the computers what to do and the data, which provide the information needed to solve the problem, are kept inside the computer in a place called memory.
Computers are thought to have many remarkable powers. However, most computers, whether large or small have three basic capabilities. First, computers have circuits for performing arithmetic operations, such as: addition, subtraction, division, multiplication and exponentiation. Second, computers have a means of communicating with the user. After all, if we couldn‘t feed information in and get results back, these machines wouldn‘t be of much use. However, certain computers (commonly minicomputers and microcomputers) are used to control directly things such as robots, aircraft navigation systems, medical instruments, etc.
 Some of the most common methods of inputting information are to use diskettes, magnetic tape, disks, and terminals. The computer‘s input device (which might be a card reader, a tape drive or disk drive, depending on the medium used in inputting information) reads the information into the computer.

For outputting information, two common devices used are a printer which prints the new information on paper, or a CRT display screen which shows the results on a TV-like screen.

 Third, computers have circuits which can make decisions. The kinds of decisions which computer circuits can make are not of the type: ‘Who would win a war between two countries?‘ or ‘Who is the richest person in the world?‘ Unfortunately, the computer can only decide three things, namely: Is one number less than another? Are two numbers equal? and. Is one number greater than another?
 A computer can solve a series of problems and make hundreds, even thousands, of logical decisions without becoming tired or bored. It can find the solution to a problem in a traction of the time it takes a human being to do the job.
 A computer can replace people in dull, routine tasks, but it has no originality; it works according to the instructions given to it and cannot exercise any value judgments. There are times when a computer seems to operate like a mechanical ‘brain‘, but its achievements are limited by the minds of human beings. A computer cannot do anything unless a person tells it what to do and gives it the appropriate information; but because electric pulses can move at the speed of light, a computer can carry out vast numbers of arithmetic-logical operations almost instantaneously. A person can do everything a computer can do but in many cases that person would be dead long before the job was finished.